Geographic Information System (GIS) - Vector Method
Vector Graphics -
Vector graphics is the use of geometrical primitives such as points, lines, curves, and shapes or polygons—all of which are based on mathematical expressions—to represent images in computer graphics. Vector graphics are based on vectors (also called paths), which lead through locations called control points or nodes. Each of these points has a definite position on the x and y axes of the work plane and determines the direction of the path; further, each path may be assigned a stroke color, shape, thickness, and fill. These properties don't increase the size of vector graphics files in a substantial manner, as all information resides in the document's structure, which describes solely how the vector should be drawn.] Vector graphics can be magnified infinitely without loss of quality, while pixel-based graphics cannot.
The term vector graphics is typically used only for 2D (planar) graphics objects, in order to distinguish them from 2D raster graphics, which are also very common. 3D graphics as commonly implemented today (e.g., in OpenGL) are typically described using primitives like 3D points and polygons connecting these (which in turn describe surfaces); these 3D primitives are much more similar to vector graphics than to raster graphics, but aren't explicitly called vector graphics. The equivalent of raster graphics in the 3D world are voxel-based graphics.
PPI to ensure sufficient color depth without sacrificing image resolution. Thus, for instance, printing an image at 250 PPI may actually require a printer setting of 1200 DPI.

In a GIS, geographical features are often expressed as vectors, by considering those features as geometrical shapes. Different geographical features are expressed by different types of geometry:
- Points
A simple vector map, using each of the vector elements: points for wells, lines for rivers, and a polygon for the lake
Zero-dimensional points are used for geographical features that can best be expressed by a single point reference—in other words, by simple location. Examples include wells, peaks, features of interest, and trailheads. Points convey the least amount of information of these file types. Points can also be used to represent areas when displayed at a small scale. For example, cities on a map of the world might be represented by points rather than polygons. No measurements are possible with point features.
- Lines or polylines
One-dimensional lines or polylines are used for linear features such as rivers, roads, railroads, trails, and topographic lines. Again, as with point features, linear features displayed at a small scale will be represented as linear features rather than as a polygon. Line features can measure distance.
- Polygons
Two-dimensional polygons are used for geographical features that cover a particular area of the earth's surface. Such features may include lakes, park boundaries, buildings, city boundaries, or land uses. Polygons convey the most amount of information of the file types. Polygon features can measure perimeter and area.
Each of these geometries are linked to a row in a database that describes their attributes. For example, a database that describes lakes may contain a lake's depth, water quality, pollution level. This information can be used to make a map to describe a particular attribute of the dataset. For example, lakes could be colored depending on level of pollution. Different geometries can also be compared. For example, the GIS could be used to identify all wells (point geometry) that are within one kilometer of a lake (polygon geometry) that has a high level of pollution.